Telegram Group & Telegram Channel
👇 Как обрабатывать крупномасштабные датасеты с иерархической кластеризацией, учитывая её высокую вычислительную стоимость

Иерархическая кластеризация в наивной реализации плохо масштабируется и становится крайне ресурсоёмкой при работе с большими объёмами данных. Однако существуют эффективные стратегии:

🔧 Приближённые или гибридные методы:
1️⃣ Использование mini-batch иерархической кластеризации, где анализируется не весь набор данных, а его небольшие случайные подвыборки.
2️⃣ Применение предварительной кластеризации (например, алгоритмом k-Means), чтобы разбить данные на подгруппы, а затем применить иерархическую кластеризацию только к центроидам этих кластеров. Это снижает объем вычислений, сохраняя структуру на высоком уровне.

⚙️ Оптимизированные структуры данных:
1️⃣ Использование KD-деревьев или Ball-деревьев может ускорить операции поиска ближайших соседей, особенно при агломеративной кластеризации.
2️⃣ Некоторые библиотеки, такие как Scipy или fastcluster, используют улучшенные алгоритмы и эффективное хранение расстояний, чтобы ускорить вычисления.

📉 Снижение размерности данных:
1️⃣ Применение методов снижения размерности (например, PCA, t-SNE, UMAP) перед кластеризацией может значительно уменьшить вычислительные издержки и упростить структуру данных.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/1006
Create:
Last Update:

👇 Как обрабатывать крупномасштабные датасеты с иерархической кластеризацией, учитывая её высокую вычислительную стоимость

Иерархическая кластеризация в наивной реализации плохо масштабируется и становится крайне ресурсоёмкой при работе с большими объёмами данных. Однако существуют эффективные стратегии:

🔧 Приближённые или гибридные методы:
1️⃣ Использование mini-batch иерархической кластеризации, где анализируется не весь набор данных, а его небольшие случайные подвыборки.
2️⃣ Применение предварительной кластеризации (например, алгоритмом k-Means), чтобы разбить данные на подгруппы, а затем применить иерархическую кластеризацию только к центроидам этих кластеров. Это снижает объем вычислений, сохраняя структуру на высоком уровне.

⚙️ Оптимизированные структуры данных:
1️⃣ Использование KD-деревьев или Ball-деревьев может ускорить операции поиска ближайших соседей, особенно при агломеративной кластеризации.
2️⃣ Некоторые библиотеки, такие как Scipy или fastcluster, используют улучшенные алгоритмы и эффективное хранение расстояний, чтобы ускорить вычисления.

📉 Снижение размерности данных:
1️⃣ Применение методов снижения размерности (например, PCA, t-SNE, UMAP) перед кластеризацией может значительно уменьшить вычислительные издержки и упростить структуру данных.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/1006

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA